Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Abstract The transition towards designs which co-package electronic and photonic die together in data center switch packages has created a scaling path to Petabyte per second (Pbps) input/output (I/O) in such systems. In a co-packaged design, the scaling of bandwidth, cost, and energy will be governed by the number of optical I/O channels and the data rate per channel. While optical communication provide an opportunity to exploit wavelength division multiplexing (WDM) to scale data rate, the limited 127 µm pitch of V-groove based single mode fiber arrays and the use of active alignment and bonding for their packaging present challenges to scaling the number of optical channels. Flip-chip optical couplers which allow for low loss, broadband operation and automated passive assembly represent a solution for continued scaling. In this paper, we propose a novel scheme to vertically couple between silicon based waveguides on separate chips using graded index (GRIN) couplers in combination with an evanescent coupler. Simulation results using a 3D Finite-Difference Time-Domain (FDTD) solver are presented, demonstrating coupling losses as low as 0.35 dB for a chip-to-chip gap of 11 µm; 1-dB vertical and lateral alignment tolerances of approximately 2.45 µm and ± 2.66 µm, respectively; and a possible 1-dB bandwidth of greater than 1500 nm. These results demonstrate the potential of our coupler as a universal interface in future co-packaged optics systems.more » « less
-
This paper describes a new abstract interpretation-based approach to verify temporal safety properties of recursive, higher-order programs. While prior works have provided theoretical impact and some automation, they have had limited scalability. We begin with a new automata-based abstract effect domain for summarizing context-sensitive dependent effects, capable of abstracting relations between the program environment and the automaton control state. Our analysis includes a new transformer for abstracting event prefixes to automatically computed context-sensitive effect summaries, and is instantiated in a type-and-effect system grounded in abstract interpretation. Since the analysis is parametric on the automaton, we next instantiate it to a broader class of history/register (or accumulator) automata, beyond finite state automata to express some context-free properties, input-dependency, event summation, resource usage, cost, equal event magnitude, etc. We implemented a prototype evDrift that computes dependent effect summaries (and validates assertions) for OCaml-like recursive higher-order programs. As a basis of comparison, we describe reductions to assertion checking for higher-order but effect-free programs, and demonstrate that our approach outperforms prior tools Drift, RCaml/Spacer, MoCHi, and ReTHFL. Overall, across a set of 23 benchmarks, Drift verified 12 benchmarks, RCaml/Spacer verified 6, MoCHi verified 11, ReTHFL verified 18, and evDrift verified 21; evDrift also achieved a 6.3x, 5.3x, 16.8x, and 6.4x speedup over Drift, RCaml/Spacer, MoCHi, and ReTHFL, respectively, on those benchmarks that both tools could solve.more » « lessFree, publicly-accessible full text available October 9, 2026
-
Free, publicly-accessible full text available August 13, 2026
-
Randomized load-balancing algorithms play an important role in improving performance in large-scale networks at relatively low computational cost. A common model of such a system is a network of N parallel queues in which incoming jobs with independent and identically distributed service times are routed on arrival using the join-the-shortest-of-d-queues routing algorithm. Under fairly general conditions, it was shown by Aghajani and Ramanan that as the size of the system goes to infinity, the state dynamics converge to the unique solution of a countable system of coupled deterministic measure-valued equations called the hydrodynamic equations. In this article, a characterization of invariant states of these hydrodynamic equations is obtained and, when d=2, used to construct a numerical algorithm to compute the queue length distribution and mean virtual waiting time in the invariant state. Additionally, it is also shown that under a suitable tail condition on the service distribution, the queue length distribution of the invariant state exhibits a doubly exponential tail decay, thus demonstrating a vast improvement in performance over the case [Formula: see text], which corresponds to random routing, when the tail decay could even be polynomial. Furthermore, numerical evidence is provided to support the conjecture that the invariant state is the limit of the steady-state distributions of the N-server models. The proof methodology, which entails analysis of a coupled system of measure-valued equations, can potentially be applied to other many-server systems with general service distributions, where measure-valued representations are useful.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available July 15, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available May 4, 2026
-
Free, publicly-accessible full text available April 29, 2026
An official website of the United States government
